Судьба молочной кислоты цикл кори

Судьба молочной кислоты цикл кори thumbnail

В клетках организма всегда существует потребность в глюкозе:

  • для эритроцитов глюкоза является единственным источником энергии,
  • нервная ткань потребляет около 120 г глюкозы в сутки и эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников (кетоновые тела),
  • глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).

Таким образом, при определенных ситуациях – при низком содержании углеводов в пище, голодании, длительной физической работе, т.е. когда глюкоза крови расходуется и наступает гипогликемия, организм должен иметь возможность синтезировать глюкозу и нормализовать ее концентрацию в крови. Это достигается реакциями глюконеогенеза, идущими в печени.

По определению, глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата, пирувата, глицерола, кетокислот цикла Кребса и других кетокислот, из аминокислот.

Необходимость глюконеогенеза и его значение для организма демонстрируют два цикла – глюкозо-лактатный и глюкозо-аланиновый.

Глюкозо-лактатный цикл (цикл Кори)

Глюкозо-лактатный цикл – это циклический процесс, объединяющий реакции глюконеогенеза и реакции анаэробного гликолиза. Глюконеогенез происходит в печени, субстратом для синтеза глюкозы является лактат, поступающий в основном из эритроцитов или мышечной ткани.

В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии.

В скелетных мышцах высокое накопление молочной кислоты (лактата) является следствием гликолиза при очень интенсивной, субмаксимальной мощности, работе, при этом внутриклеточный рН снижается до 6,3-6,5. Но даже при работе низкой и средней интенсивности в скелетной мышце всегда образуется некоторое количество лактата. 

Убрать молочную кислоту можно только одним способом – превратить ее в пировиноградную кислоту. Однако сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента лактатдегидрогеназы-5. Зато клеточная мембрана высоко проницаема для лактата и он движется по градиенту концентрации наружу. Поэтому во время и после нагрузки (при восстановлении) лактат легко удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой. 

Большая часть лактата крови захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза. Глюкоза, образованная в печени, используется самим гепатоцитом или возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена. Также она может распределиться по другим органам.

Глюкозо-аланиновый и глюкозо-лактатный циклы

Глюкозо-лактатный (выделен желтым) и глюкозо-аланиновый циклы

Глюкозо-аланиновый цикл

Целью глюкозо-аланинового цикла также является уборка пирувата, но кроме этого решается еще одна немаловажная задача – доставкааминного азота из мышцы в печень.

При мышечной работе и в покое в миоците распадаются белки и образуемые аминокислоты трансаминируются с α-кетоглутаратом и полученный глутамат взаимодействует с пируватом. Образующийся аланин является транспортной формой аминного (аминокислотного) азота и пирувата из мышцы в печень. В гепатоците идет обратная реакция трансаминирования, аминогруппа через глутамат передается на синтез мочевины, пируват используется для синтеза глюкозы.

Читайте также:  Изоляция больных корью прекращается

Кроме мышечной работы, глюкозо-аланиновый цикл активируется во время голодания, когда белки мышц и других тканей распадаются и многие аминокислоты используются в качестве источника энергии, а их азот необходимо доставить в печень.

Источник

Лактат – конечный продукт анаэробного окисления глюкозы в мышцах, особенно в белых мышечных волокнах, где митохондрий меньше, чем в красных. Может включаться в глюконеогенез после окисления до пирувата в лактатдегидрогеназной реакции. При продолжительной физической работе основным источником лактата является скелетная мускулатура, в клетках которой преобладают анаэробные процессы. Накопление молочной кислоты в мышцах ограничивает их работоспособность. Это связано с тем, что при повышении концентрации молочной кислоты в ткани снижается уровень рН (молочнокислый ацидоз). Изменение рН приводит к ингибированию ферментов важнейших метаболических путей. В утилизации образующейся молочной кислоты важное место принадлежитглюкозо-лактатному циклу Кори.

Цикл Кори и глюкозо-аланиновый цикл (пояснения в тексте).

Лактат, образовавшийся в мышцах, переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая с током крови может возвращаться в работающую мышцу. В печени часть лактата может окисляться до углекислого газа и воды, превращаться в пируват и вовлекаться в общий путь катаболизма.

Значение цикла Кори:

1. Регуляция постоянного уровня глюкозы в крови.

2. Обеспечивает утилизацию лактата.

3. Предотвращает накопление лактата (снижение рН – лактоацидоз).

4. Экономичное использование углеводов организмом.

Регуляция обмена углеводов осуществляется на уровне тканей – кровь, печень, мышцы.

Глюкогенные аминокислоты, к которым относятся большинство белковых аминокислот. Ведущее место в глюконеогенезе среди аминокислот принадлежит аланину, который может превращаться в пируват путём трансаминирования. При голодании, физической работе и других состояниях в организме функционирует глюкозо-аланиновый цикл, подобный циклу Кори для лактата (рисунок 16.2). Существование цикла аланин – глюкоза препятствует отравлению организма, так как в мышцах нет ферментов, утилизирующих аммиак. В результате тренировки мощность этого цикла значительно возрастает.

Другие аминокислоты могут, подобно аланину, превращаться в пируват, а также в промежуточные продукты цикла Кребса (α-кетоглутарат, фумарат, сукцинил-КоА). Все эти метаболиты способны преобразовываться в оксалоацетат и включаться в глюконеогенез.

Глицерол – продукт гидролиза липидов в жировой ткани.Этот процесс значительно усиливается при голодании. В печени глицерол превращается в диоксиацетонфосфат – промежуточный продукт гликолиза и может быть использован в глюконеогенезе.

Жирные кислоты и ацетил-КоА не являются предшественниками глюкозы. Окисление этих соединений обеспечивает энергией процесс синтеза глюкозы.

Энергетический баланс. Путь синтеза глюкозы из пирувата (рисунок 16.6) содержит три реакции, сопровождающиеся потреблением энергии АТФ или ГТФ:

а) образование оксалоацетата из пирувата (затрачивается молекула АТФ);

б) образование фосфоенолпирувата из оксалоацетата (затрачивается молекула ГТФ);

в) обращение первого субстратного фосфорилирования – образование 1,3-дифосфоглицерата из 3-фосфоглицерата (затрачивается молекула АТФ).

Каждая из этих реакций повторяется дважды, так как для образования 1 молекулы глюкозы (С6) используются 2 молекулы пирувата (С3). Поэтому энергетический баланс синтеза глюкозы из пирувата составляет – 6 молекул нуклеозидтрифосфатов (4 молекулы АТФ и 2 молекулы ГТФ). При использовании других предшественников энергетический баланс биосинтеза глюкозы отличается.

Читайте также:  Анализ на корь у ребенка

Источник

СУДЬБА ЛАКТАТА, ОБРАЗОВАВШЕГОСЯ ПРИ ГЛИКОЛИЗЕ

Накопившийся в ходе гликолиза лактат при поступлении кислорода в клетку начинает постепенно превращаться обратно в ПВК. Часть этого пирувата окисляется во втором и третьем этапах ГБФ-пути. АТФ, образующаяся при этом, используется для синтеза из оставшегося количества ПВК глюкозы или гликогена (в условиях покоя). Процесс синтеза глюкозы или гликогена из лактата называется ОБРАЩЕНИЕМ ГЛИКОЛИЗА.

Лактат не является конечным продуктом метабо­лизма. Дальнейшее использование лактата связано с его превращением в печени в пируват. Направление лактатдегидрогеназной реакции в ра­ботающих мышцах и печени обусловлено различ­ным отношением концентраций восстановленной и окисленной форм NAD+ Отношение NAI+/NADH в сокращающейся мышце больше, чем в печени.

Цикл Кори (глюкозолактатный цикл) можно представить в виде последовательности событий (рис 9).

Цикл Кори. 1 – поступление лактата из сокращающейся мышцы с током крови в печень; 2,3— синтез глюкозы из лактата в печени; 4 — поступление глюкозы из печени с током крови в работающую мышцу; 5,6— использование глюкозы как энергетического субстрата сокращающейся мышцей и образование лактата.

Рисунок 9

В мышцах пируват может превращаться также и в аланин. Аланин с кровью транспортируется в печень и там, теряя аминогруппу, превращается в пируват. Эта цепь превращений называетсяглюкозоаланиновым циклом.

Снижение использования лактата в качестве субстрата в синтезе глюкозы, вызванное дефектом ферментов глюконеогенеза, может приводит к по­вышению концентрации лактата и, следовательно, к понижению рН — лактатацидозу.

СИНТЕЗ ГЛЮКОЗЫ В ПЕЧЕНИ (ГЛЮКОНЕОГЕНЕЗ)

Глюконеогенез — это процесс синтеза глюкозы из веществ неуглеводной природы. У млекопитающих эту функцию выполняет в основном печень, в меньшей мере – почки и клетки слизистой кишечника. Главными суб­стратами глюконеогенеза являютсяпируват, лактат, глицерин, аминокислоты (рис.10).

Глюконеогенез обеспечивает потребности орга­низма в глюкозе в тех случаях, когда диета содержит недостаточное количество углеводов (физическая нагрузка, голодание). Постоянное поступление глюкозы особенно необходимо для нервной системы и эри­троцитов. При понижении концентрации глюкозы в крови ниже определенного критического уровня нарушается функционирование мозга; при тяжелой гипогликемии возникает коматозное состояние и мо­жет наступить летальный исход.

Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза. На рисунке показаны пункты включения первичных субстратов в глюконеогенез:

Глюкоза необходи­ма для жировой ткани как источник глицерола, входящего в состав глицеридов; она играет существенную роль в поддержании эффек­тивных концентраций метаболитов цикла лимон­ной кислоты во многих тканях. Даже в условиях, когда большая часть потребностей организма в калориях обеспечивается за счет жира, всегда сохраняется определенная потребность в глю­козе. Кроме того, глюкоза служит единственным ви­дом топлива для работы скелетной мышцы в анаэробных условиях. Она является предшествен­ником молочного сахара (лактозы) в молочных же­лезах и активно потребляется плодом в период раз­вития. Механизм глю­конеогенеза используется для удаления из крови продуктов тканевого метаболизма, например лактата, образующегося в мышцах и эритроцитах, глицерола, непрерывно образующегося в жировой ткани

Читайте также:  Как распознать корь или краснуху

Включение различных субстратов в глюконео­генез зависит от физиологического состояния орга­низма. Лактат является продуктом анаэробного гликоли­за в эритроцитах и работающих мышцах. Глицерин высвобождается при гидролизе жиров в жировой ткани в постабсорбтивный период или при физической нагрузке. Аминокислоты образуются в результате распада мышечных белков.

Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться (рис. 12). Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат. Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным:

Таких циклов существует три – соответственно трем необратимым реакциям. Эти циклы служат точками приложения регуляторных механизмов, в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза.

Направление реакцийпервого субстратного цик­ла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюко­зы в крови повышается. Актив­ность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реак­цияглюкоза ® глюкозо-6-фосфат. Кроме того, инсу­лин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфатом (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата направляется по гликолитическому пути.

Превращение глюкозо-6-фосфата в глюкозу катализируется другой специфической фосфатазой—глюкозо-6-фосфатазой. Она присутствует в пе­чени и почках, но отсутствует в мышцах и жировой ткани. Наличие этого фермента позволяет ткани по­ставлять глюкозу в кровь.

Распад гликогена с образованием глюкозо-1-фосфата осуществляется фосфорилазой. Синтез гликогена идет по совершенно другому пути, через образование уридиндифосфатглюкозы, и катализи­руетсягликогенсинтазой.

Второй субстратный цик­л: превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат, катализи­руется специфическим ферментомфруктозо-1,6-бисфосфатазой. Этот фермент имеется в печени и почках, он был также обнаружен в поперечнополосатых мышцах.

Направление реакцийвторого субстратного цик­ла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата.

Фруктозо-2,6-бисфосфат образуется путем фосфорилирования фруктозо-6-фосфата при участии би­функционального фермента (БИФ), который ка­тализирует также и обратную реакцию.

Киназная активность проявляется, когда бифунк­циональный фермент находится в дефосфорилированной форме (БИФ-ОН). Дефосфорилированная форма БИФ характерна для абсорбтивного периода, когда инсулин-глюкагоновый индекс высокий.

При низком инсулин-глюкагоновом индексе, ха­рактерном для периода длительного голодания, происходят фосфорилирование БИФ и проявление его фосфатазной активности, результатом чего яв­ляются снижение количества фруктозо-2,6-бисфосфата, замедление гликолиза и переключение на глюконеогенез.

Киназная и фосфатазная реакции катализируют­ся разными активными центрами БИФ, но в каждом из двух состояний фермента — фосфорилиро-ванном и дефосфорилированном — один из актив­ных центров ингибирован.

Источник