Функціональна організація кори великих півкуль

Функціональна організація кори великих півкуль thumbnail

Функції кори повністю забезпечують пристосування до життя та вищу психічну діяльність. Видалення великих півкуль призводить до втрати здатності до самостійного життя. У людини кора великих півкуль забезпечує такі функції: взаємодія організму з навколишнім середовищем; регуляція діяльності внутрішніх органів; регуляція обміну речовин та енергії; вища нервова діяльність мова, пам’ять, мислення, свідомість.

Кора головного мозку є вищим відділом ЦНС. Це сіра речовина товщиною 3-5 мм, вкриває півкулі головного мозку. Вона займає площу 22 м2, утворюючи багаточисельні складки. В складі кори до 109-1010 нейронів, які утворюють 6 шарів:

– Молекулярний шар має мало клітин, їх волокна утворюють поверхневе густе тангенціальне сплетіння з дендритами другого шару.

– Зовнішній зернистий шар пірамідні клітини середньої величини, волокна яких розташовані радіально.

– Внутрішній зернистий шар зірчасті клітини, волокна яких розташовані горизонтально.

– Внутрішній пірамідний (гангліозний) шар це гігантські пірамідні клітини Беца, які мають довгі дендрити, що тягнуться до молекулярного шару.

– Поліморфний шар це шар веретеноподібних клітин.

Зв’язок кори великих півкуль з підкорковими структурами здійснюється за допомогою аферентних і еферентних волокон. Аферентні волокна називаються кортикопетальними, вони несуть інформацію в кору. Основними з них є таламокортикальні волокна. Це прямі аферентні шляхи, які розгалужуються у внутрішньому зернистому шарі і не дають колатералей. Невелика частина волокон йде в молекулярний шар, утворюючи колатеральні еферентні волокна, які називаються кортикофугальними, вони несуть інформацію від кори до підкоркових структур. Ці волокна діляться на 3 групи:

– Проекційні прямі еферентні волокна, що утворюють провідні шляхи;

– Асоціативні – волокна, що утворюють безліч колатералей та йдуть в різні підкоркові зони однойменної півкулі;

– Комісуральні – волокна, що йдуть від кори в складі мозолистого тіла і з’єднують зони кори однієї півкулі з підкорковими зонами другої.

1, 2 шари кори великих півкуль забезпечують аналіз та синтез отриманої інформації, мають багато асоціативних волокон.

3, 4 шари кори великих півкуль одержують інформацію від усіх органів та частин тіла за рахунок кортикопетальних волокон.

5, 6 шари кори великих півкуль це рухові нейрони, звідси починаються рухові шляхи, що включають кортикофугальні волокна.

В шарах клітини розміщуються перпендикулярно до поверхні кори, утворюючи ланцюги. Елементарні нервові ланцюги відповідають за переробку певної інформації. Такий функціональний принцип названо кортикальні колонки. Це елементарна функціональна одиниця, в якій здійснюється локальна переробка інформації від рецепторів однієї модальності. Кожна колонка має діаметр 500-1000 мкм, в складі яких розміщується 5-6 нейронів. Пірамідні клітини орієнтовані вертикально, їх аксони утворюють зворотні колатералі, які забезпечують як процеси полегшення в межах мікромодуля, так і гальмування між мікромодулями. Аксони зірчастих клітин ідуть через інтернейрони горизонтально, тому вони, головним чином, забезпечують гальмівні процеси. Веретеноподібні клітини мають довгі аксони, які орієнтовані як горизонтально, так і вертикально. Вони формують кортико-таламічні шляхи.

Мікромодулі об’єднуються в макромодулі завдяки горизонтальним розгалуженням терміналей. В колонці можуть бути прості та складні нейрони. Поряд з цим, в корі існує система, яка зчитує елементарні процеси в колонках та об’єднує всю інформацію. Формування таких систем зумовлено внутрішньо-кортикальними зв’язками між окремими макромодулями. Збудження одного мікромодуля викликає гальмування сусідніх. Активація мікромодулів відбувається за рахунок горизонтальних волокон таламокортикальних шляхів.

Дата добавления: 2015-09-27 | Просмотры: 1316 | Нарушение авторских прав

Источник

Загальна оцінка

Кора здійснює контроль усіх функцій. Кортикалізація функцій є одним із принципів координації. Особливістю діяльності кори є психонервова діяльність. Відоме значення кори великих півкуль полягає у причетності до організації рухових програм (задум руху, після організації програми – вибір м’язів для її виконання); при здійсненні емоцій – оцінка корою високоймовірних подій (тут кора – одна з чотирьох стратегічних зон), суб’єктивний компонент (мотивація) теж потребує кортикалізації. При утворенні будь-якої функціональної системи – забезпечення поведінкової реакції, тобто зовнішньої ланки функціональної системи.

Усе це прояви діяльності, які не вдається розкрити звичайними фізіологічними методами.

Для повноцінної діяльності кори необхідні дві умови. Першою з них є стан неспання, який забезпечується завдяки активуючому впливу висхідного відділу РФ. Другий – це свідомість. Визначається як правильне відбиття (віддзеркалення) людиною дійсності зі спрямованим регулюванням її взаємовідносин з навколишнім середовищем (Косицький Г. І., 1985).

За Р. Шмідтом, свідомість – особливий стан, який являє собою головну ознаку існування.

Критерії свідомості:

  • • усвідомлення власного “Я” і визнання інших індивідуумів;
  • • здатність зосередитись, тобто наявність уваги;
  • • здатність до абстрагування, тобто словесного, творчого вираження думки;
  • • можливість оцінити наступний вчинок, тобто здатність до прогнозування;
  • • наявність етичних та естетичних цінностей.

Хоча для свідомості необхідне неспання, але знаку рівності між свідомістю й неспанням ставити не можна. Можливі ситуації, коли між тим і другим виникає дисоціація. Наприклад, при хворобі Альцгеймера (ураження нейронів мозку атрофічного характеру у зв’язку з надлишковим накопиченням амілоїдного білка) з’являється “симптом дзеркала”: хворий сприймає своє відображення в дзеркалі як іншу людину й розпочинає з нею бесіду.

Ще в доісторичні часи люди знали, що свідомість, нормальна поведінка можуть порушуватись (непритомність, тобто зомління, сноподібні стани) у зв’язку з травмою голови, при затисканні сонних артерій.

Вивчення функцій кори довгий час було малоефективним з урахуванням особливого, виключного значення її в діяльності організму людини – так званої психічної діяльності – тієї сфери, яка складає духовний світ людини, тобто того, що зветься душею й віками знаходилось поза сферою природознавців.

І. П. Павлов писав: “Нестримний з часів Галілея хід природознавства вперше помітно припинився перед вищим відділом мозку. Здавалось, що це недарма, що тут дійсно критичний момент природознавства, оскільки мозок, котрий у вищій його формації людського мозку утворював і утворює природознавство, сам стає об’єктом природознавства”.

Цю завісу вперше відхилили Сеченов і Павлов. Сеченов – своїм твердженням про рефлекторну природу психічних актів, Павлов – експериментальним обґрунтуванням його, завдяки розробці метода хронічного експерименту і його особливої різновидності – методу умовних рефлексів.

Методи вивчення та функції кори великих півкуль

Найдревнішим є анатомо-клінічний метод. На підставі зіставлення порушень у поведінці хворого й виявлених посмертно (при патологоанатомічній секції) уражень у корі мозку, зроблено низку висновків про функціональне призначення тієї чи іншої ділянки кори.

Источник

Раніше вважалося, що вищі функції мозку людини здійснюються корою великих півкуль. Ще в минулому столітті було встановлено, що при видалення кори у тварин, вони втрачають здатність до виконання складних актів поведінки, обумовлених придбаним життєвим досвідом. Зараз встановлено, що кора не є вищим розподільником всіх функцій. Багато її нейрони входять до складу сенсорних і рухових систем середнього рівня. Субстратом вищих психічних функцій є розподільні системи ЦНС, до складу яких входить і підкіркові структури і нейрони кори. Роль будь-якій області кори залежить від внутрішньої організації її синаптичних зв’язків, а також її зв’язків з іншими утвореннями ЦНС. Разом з тим, у людини в процесі еволюції відбулася кортіколізація всіх, у тому числі і життєво важливих вісцеральних функцій. Тобто їх підпорядкування корі. Вона стала головною інтегруючою системою всієї ЦНС. Тому в разі загибелі значної частини нейронів кори у людини, його організм стає нежиттєздатним і гине в результаті порушення гомеостазу (гіпотермія мозку).
Кора головного мозку складається з шести шарів:
1. Молекулярний шар, самий верхній. Утворений безліччю висхідних дендритів пірамідних нейронів. Тел нейронів в ньому мало. Цей шар пронизують аксони неспецифічних ядер таламуса, що відносяться до ретикулярної формації. За рахунок такої структури шар забезпечує активацію всієї кори.
2. Зовнішній зернистий шар. Формується щільно розташованими дрібними нейронами, що мають численні синаптичні контакти між собою. Завдяки цьому спостерігається тривала циркуляція нервових імпульсів. Це є одним з механізмів пам’яті.
3. Зовнішній пірамідної шар. Складається з дрібних пірамідних клітин. За допомогою їх і клітин другого шару відбувається утворення межкортікальних зв’язків, тобто зв’язків між різними областями кори.
4. Внутрішній зернистий шар. Містить зірчасті клітини, на яких утворюють синапси аксони перемикаючих і асоціативних нейронів таламуса. Сюди надходить вся інформація від периферичних рецепторів.
5. Внутрішній пірамідний шар. Утворений великими пірамідними нейронами, аксони яких утворюють спадні пірамідні шляхи, що прямують в довгастий і спинний мозок.
6. Шар поліморфних клітин. Аксони його нейронів йдуть до таламуса.
Коркові нейрони утворюють нейронні мережі, що включають три основні компоненти:
1. аферентні або вхідні волокна.
2. інтернейрони
3. еферентні – вихідні нейрони.
Ці компоненти утворюють кілька рівнів нейронних мереж.
1. мікросетей. Самий нижній рівень. Це окремі міжнейронні синапси з їх пре – і постсинаптическими структурами. Синапс є складним функціональним елементом, що мають внутрішні саморегуляторні механізми. Нейрони кори мають сильно розгалужені дендрити. На них знаходиться величезна кількість шипиків у вигляді барабанних паличок. Ці шипики служать для утворення вхідних синапсів. Коркові синапси надзвичайно чутливі до зовнішніх впливів. Наприклад, позбавлення зорових подразнень, шляхом утримання зростаючих тварин в темряві, призводить до значного зменшення синапсів в зоровій корі. При хворобі Дауна синапсів в корі також менше, ніж у нормі. Кожен шипик утворює синапс, виконує роль перетворювача сигналів, що йдуть до нейрона.
2. Локальні мережі. Нова кора шарувата структура, шари якої утворені локальними нейронними мережами. До неї, через таламус і нюховий мозок, можуть приходити імпульси від усіх периферичних рецепторів. Вхідні волокна проходять через всі шари, утворюючи синапси з їх нейронами. У свою чергу, колатералі вхідних волокон і інтернейрони цих шарів утворюють локальні мережі на кожному рівні кори. Така структура кори забезпечує можливість обробки, зберігання та взаємодії різної інформації. Крім того в корі є кілька типів вихідних нейронів. Практично кожен її шар дає вихідні волокна, що прямують до інших верствам або віддаленим дільницям кори.
3. Коркові колонки. Вхідні і вихідні елементи з інтернейронамі утворюють вертикальні коркові колонки або локальні модулі. Вони проходять через всі шари кори. Їх діаметр становить 300-500 мкм. Утворять ці колонки нейрони концентруються навколо таламо-кортикального волокна, що несе певний вид сигналів. В колонках є численні міжнейронні зв’язки. Нейрони 1-5 шарів колонок забезпечують сприйняття і переробку надходить. Нейрони 5-6 шару утворюють еферентні шляхи кори. Сусідні колонки також пов’язані між собою. При цьому збудження однієї супроводжується гальмуванням сусідніх.
У певних областях кори зосереджені колонки, що виконують однотипну функцію. Ці ділянки називаються цітоархітектоніческі полями. У корі людини їх 53. Поля ділять на первинні, вторинні і третинні. Первинні забезпечують обробку певної сенсорної інформації, а вторинні і третинні взаємодія сигналів різних сенсорних систем. Зокрема, первинне Соматосенсорная поле, до якого йдуть імпульси від всіх шкірних рецепторів (тактильних, температурних, больових) знаходиться в області задньої центральної звивини. Найбільше місця в корі займає представництво губ, обличчя, кистей рук. Тому при ураженнях цієї зони змінюється чутливість відповідних ділянок шкіри.
Представництво проприорецепторов м’язів і сухожиль, тобто моторна кора займає передню центральну звивину. Імпульси від проприорецепторов нижніх кінцівок йдуть до верхньої частини звивини. Від м’язів тулуба до середньої частини. Від мускулатури голови і шиї до її нижній частині. Найбільшу площу цього поля також займає представництво мускулатури губ, язика, кистей і обличчя.
Імпульси від рецепторів очі надходять в потиличні області кори близько шпорної борозни. Поразка первинних полів призводить до корковою сліпоти, а вторинних і третинних – втрати зорової пам’яті.
Слухова область кори розташована у верхній скроневій звивині і поперечної звивині Гешля. При ураженні первинних полів зони розвивається коркова глухота. Периферичних – труднощі в розрізненні звуків. У задній третині верхньої скроневої звивини лівої півкулі знаходиться сенсорний центр мови – центр Верніке. При його патологічних змінах втрачається здатність до розуміння мови.
Руховий центр мовлення – центр Брока, розташовується в нижньої лобової звивині лівої півкулі. Порушення в цій частині кори призводять до втрати
здатності вимовляти слова.

Читайте также:  Клиника и лечение кори

Источник

Архітектоніка кори – це загальний план будови кори. Загальна поверхня кори півкуль дорослої людини 2000 – 2500 см , причому 70% її заховані в глибині борозен. Товщина кори 2 – 4,5 мм. Йервові клітини і волокна, які утворюють кору, розташовані в 7 шарів:

  • 1-й шар – молекулярний – найбільш поверхневий. У цьому шарі мало нервових клітин, вони дрібні. Шар утворений сплетінням нервових волокон. Завдяки цьому шару відбуваються внутрішньо- і міжпівкулеві зв’язки між різними частинами кори.
  • 2-й шар – зовнішній зернистий. Складається з дрібних клітин у вигляді зернин і пірамід. Шар бідний на мієлінові волокна. Нейрони цього шару називаються вставними або інтернейронами. Ці нейрони забезпечують переробку інформації і її проведення до структур молекулярного шару на нижчі кіркові шари.
  • 3-й шар – пірамідний, утворений середніми і великими пірамідними клітинами, з великою кількістю дендритів.
  • 4-й шар – внутрішній зернистий, складається з дрібних зернистих клітин різної форми. Гранулярні нейрони, які розташовані у цьому шарі, здійснюють переробку і передачу інформації із закінчень аферентних волокон, які йдуть до кори і розгалужуються в межах I шару на пірамідні нейрони III і V шарів.
  • 5-й шар – гангліозний – складається з великих пірамідних клітин. У передній центральній закрутці він містить ще “клітини Беца”, аксони яких дають початок низхідним пірамідним шляхам, що проходять через стовбур головного мозку у спинний мозок і зв’язують кору півкуль з периферією. Аксони III і V шарів забезпечують різні види внутрішньо-кіркових, міжкіркових і кірково-підкіркових зв’язків. В цих шарах є також інтернейрони різних розмірів і форми, які забезпечують вибіркові внутрішньо-кіркові взаємодії між нейронами різних типів. Це необхідно для:
    • – передачі інформації між вхідними в кору аферентними волокнами і пірамідними нейронами;
    • – обміну інформацією між нейронами, які розташовані в різних кіркових шарах;
    • – обміну інформацією між нейронами, які розташовані в різних звивинах, частках і півкулях;
    • – зберігання і відтворення інформації (пам’ять).
  • 6-й шар – поліморфний – складається з клітин трикутної і веретеноподібної форми і належать до білої речовини мозку.
  • 7-й шар – складається з веретеноподібних нейронів, має багато волокон. Між нервовими клітинами всіх шарів виникають як постійні, так і тимчасові зв’язки.

Під корою міститься біла речовина півкуль мозку, в складі якої розрізняють асоціативні, комісуральні та проекційні волокна.

Асоціативні волокна зв’язують між собою окремі ділянки однієї півкулі. Короткі асоціативні волокна зв’язують між собою окремі закрутки і близькі поля, а довгі – закрутки різних часток у межах однієї півкулі.

Читайте также:  Первичные осложнения при кори

Асоціативні поля беруть участь в інтеграції сенсорної інформації та забезпеченні зв’язків між чутливими й руховими зонами кори.

Асоціативні шляхи утворюються інтернейронами і їх волокнами. До асоціативних відносять також зв’язки, які утворюються між ядрами однієї половини стовбура мозку, проміжного мозку і базальними ядрами відповідної півкулі. У спинному мозку асоціативні нейрони забезпечують міжсегментарні зв’язки.

Комісуральні волокна зв’язують симетричні частини обох півкуль, більша частина проходить через мозолисте тіло.

Проекційні волокна виходять за межі півкуль, по них здійснюється двобічний зв’язок кори з відділами центральної нервової системи, що лежать нижче.

Проекційні шляхи можуть бути низхідними та висхідними.

Висхідні (сенсорні, чутливі або аферентні) проекційні шляхи проводять нервові імпульси від екстеро-, пропріо- і інтерорецепторів (чутливих нервових закінчень у шкірі, органів опорно-рухової системи, внутрішній органів), а також від органів чуття до головного мозку.

Крім кори головного мозку, сенсорна інформація може поступати і в інші відділи нервової системи, а саме, в мозочок, середній мозок, ретикулярну формацію.

Низхідні (еферентні) проекційні шляхи проводять нервові імпульси від кори великих півкуль до базальних і стовбурових ядер головного мозку, а потім до рухових ядер спинного мозку і стовбуру мозку. Вони передають інформацію, пов’язану з програмованим рухом організму в конкретних ситуаціях, тому є руховими провідними шляхами.

У товщі білої речовини півкуль є порожнини – бічні шлуночки, які протоками сполучаються з третім мозковим шлуночком.

У людини відомі випадки народження дітей, у яких немає кори великого мозку. Це – аненцефали. Вони живуть лише кілька днів. Все, що набувається організмом протягом індивідуального життя зв’язане з функцією великого мозку. З функцією кори великого мозку зв’язана вища нервова діяльність. Взаємодія організму із зовнішнім середовищем, його поведінка в навколишньому світі зв’язані з півкулями великого мозку.

Источник

Кора великих півкуль головного мозку є вищим, найбільш молодим у філогенетичному відношенні і особливо складним, за своєю структурою і функціями, відділом ЦНС.

Кора – сіра речовина, скупчення величезної кількості (14 – 16 мільярдів) нервових клітин на поверхні великих півкуль. При загальному огляді кори щодо її розвитку і будови розрізняють нову кору (неокортекс) і стару кору (палеокортекс). Нова кора знаходиться на верхньопередній, задній і боковій поверхнях півкуль. Стара кора розміщена на нижній і внутрішній поверхнях півкуль (рис. 1.26). Три основні найбільші борозни – центральна, бічна (сильвієва), тім’яно-потилична ділять нову кору кожної півкулі на чотири долі, або частки: лобову, тім’яну, потиличну і скроневу. Якщо розгорнути (відхилити в боки) лобову і скроневу частки, то в глибині сильвієвої борозни можна побачити п’яту частку – острівкову частку кори. Тут знаходиться центр нюху. На її нижній частині розташований гіпокамп (морський коник), який належить до старої кори і є однією з основних структур лімбічної системи мозку. Менші, ніж основні, борозни розмежовують закрутки. Так, у лобовій частці в області нової кори розрізняють верхню, середню і нижню закрутки, а поруч з ними перпендикулярно їм розташована передня центральна закрутка, яка відділяється центральною борозною від задньої центральної закрутки, що відноситься до тім’яної долі. На боковій поверхні скроневої частки також розрізняють верхню, середню і нижню закрутки.

Рис. 1.26

Ділянки кори медіальної поверхні правої півкулі головного мозку за функціями: 2, 4, 11, 12, 13 – структури лімбічної системи; 1 – мозолисте тіло, 2 – поясна закрутка, 3 – поясна борозна, 4 – склепіння, 5 – рухова зона, 6 – сомато-сенсорна зона, 7 – тім’яна частка кори, 8 – тім’яно-потилична борозна, 9 – потилична частка кори, 10 – кірковий центр зорового аналізатора, 11 – гіпокампова закрутка, 12 – гіпокамп, 13 – мигдалеподібне ядро, 14 – смугасте тіло (головка хвостатого ядра)

Передня центральна закрутка являє собою первинну моторну зону. Локалізація в цій зоні рухових точок, від яких посилаються сформовані у вертикальних колонках нервові імпульси до скелетних м’язів, відповідає послідовності представництва рецепторних полів у задній центральній закрутці (перехрестя: права півкуля – ліва сторона тіла, ліва півкуля – права сторона тіла, верх – низ, низ – верх). Пірамідні клітини моторної зони (гігантські піраміди Беца), що входять до складу вертикальної колонки як структурно-функціональної одиниці кори, посилають імпульси до мотонейронів, які іннервують скелетні м’язи. Пірамідні клітини кори відповідають за довільні м’язові скорочення.

Кіркова регуляція рухової діяльності не обмежується функцією первинної моторної зони. Поруч з нею в лобовій частці і за її межами існують вторинні і третинні моторні зони, які формують складні рухові акти за участю базальних гангліїв, мозочка і структур екстрапірамідної системи. В третинних зонах лобової частки здійснюється свідоме програмування довільних рухів, визначення мети поведінки, рухових задач.

Ядро рухового аналізатору, що забезпечує синтез ціленаправлених рухів, розміщується у лівій нижній тім’яній дольці (у правшів). При ураженні цього центру зберігається здатність до рухів взагалі, але з’являється нездатність здійснювати ціленаправлені рухи (апраксія).

Більшість анатомів, неврологів вважають, що ядро аналізатора положення і рухів голови – статичниий аналізатор – знаходиться в скроневій долі. Цей аналізатор відіграє вирішальну роль в прямоходінні. При пошкодженні центру статичного аналізатору спостерігається атаксія.

У задній центральній закрутці міститься сомато-сенсорна зона – зона шкірної і м’язово-суглобової чутливості. На внутрішній поверхні потиличної частки в області шпорної борозни локалізується зона зорового аналізатора (центр зору), у скроневій частці, в середній частині її верхньої закрутки – зона слухового аналізатора. В нижній ділянці задньої центральної закрутки знаходиться центр смаку.

В корі лівої півкулі головного мозку локалізуються сенсорний і моторний центри мови. У верхній скроневій закрутці, ззаду від аналізаторного центра слуху, міститься слуховий (сенсорний) центр мови –поле Верніке. За допомогою цього центру людина контролює свою мову і розуміє чужу. При ушкодженні цього центру зберігається здатність чути звуки, але втрачається здатність розуміти слова (сенсорна афазія).Ядро рухового аналізатора артикуляції мови знаходиться в задній частині нижньої лобної закрутки (поле 44, Брока). Його ушкодження призводить до моторної афазії: хворі розуміють мову, але говорити не можуть, хоча найпростіші рухи мовної мускулатури збережені. Центр Верніке забезпечує розуміння почутих слів, центр Брока регулює артикуляцію – роботу органів мови.

Центр рухового аналізатора письмової мови знаходиться в задньому відділі середньої лобної закрутки. При ушкодженні цього поля зберігаються всі види рухів, але втрачається здатність до тонких рухів, необхідних для написання літер (аграфія).

Центр зорового аналізатора письмової мови знаходиться в нижній тім’яній дольці. При пошкодженні цієї дольки зір зберігається, але втрачається здатність читати (алексія).

Нова кора складається з шести клітинних шарів: 1) молекулярний (поверхневий) шар; 2) зовнішній зернистий шар; 3) шар середніх пірамід; 4) внутрішній зернистий шар; 5) шар гігантських пірамідних клітин (клітини Беца); 6) поліморфний шар.

Вчення про загальні закономірності будови кори великих півкуль головного мозку називається архітектонікою кори, а розділ архітектоніки, який вивчає закономірності клітинної будови кори, називається цитоархітектонікою кори великих півкуль.

При порівнянні сенсорних і моторних зон кори виявилось, що в сенсорних зонах домінують зернисті шари, до яких надходить аферентна інформація. В моторних зонах зернисті шари розвинуті мало, переважають шари пірамідних клітин. Другий і третій шари кори забезпечують асоціативні зв’язки в межах самої кори, аксони гігантських пірамідних клітин утворюють кортикоспінальний (пірамідний) і кортикобультарний шляхи.

Читайте также:  Надо ставить прививку от кори если в детстве переболели корью

Лімбічна система. На внутрішній поверхні кожної півкулі над мозолистим тілом лежить поясна закрутка, яка переходить у гіпокамп і гіпокампову закрутку. Ці кіркові структури належать до старої кори. Разом з мигдалеподібним ядром скроневої частки та іншими підкірковими ядрами вони складають лімбічну систему (від лат. limbus – обвід).

Лімбічна система має двосторонні зв’язки з новою корою в області лобової і скроневої часток, з гіпоталамусом, таламусом, середнім мозком (через гіпоталамус).

Функції лімбічної системи проявляються в основному при її взаємодії з гіпоталамусом. Вона регулює секрецію ендокринних залоз і активність внутрішніх органів. Вплив лімбічної системи на діяльність внутрішніх органів опосередкований вегетативними центрами гіпоталамуса. Лімбічна система відіграє важливу роль у регуляції емоційних станів, пам’яті та мотивацій поведінки. Вважають, що значна роль у зберіганні слідів пам’яті належить гіпокампу, який отримує сенсорну інформацію через таламус.

Вегетативна нервова система

Вегетативна нервова система, як і соматична, має периферичну і центральну частини. Центральна частина – вищі і нижчі центри симпатичного і парасимпатичного відділів.

Вищі центри розташовані в гіпоталамусі, вони контролюються лімбічною системою (вісцеральним мозком); нижчі центри симпатичного відділу вегетативної нервової системи розташовані в грудному і поперековому відділах спинного мозку, парасимпатичного відділу – в стовбуровій частині головного мозку і в крижовом відділі спинного мозку (рис. 1.27).

Вся периферична частина вегетативної нервової системи (симпатичні і парасимпатичні нерви), являє собою двохнейронні шляхи. На відміну від соматичних нервів (чутливих і рухових), волокна яких на своєму шляху від ЦНС ніде не перериваються, двохнейронні симпатичні і парасимпатичні нервові шляхи перериваються у вегетативних гангліях (вузлах). Ті нервові волокна, які відходять від ЦНС і закінчуються в гангліях, називаються преганліонарними, а ті волокна, що йдуть від клітинних тіл другого нейрона, розташованого в гангліях, називаються постганліонарними (післявузловими).

В ганглії нейрони з’єднуються сипапсами. В усіх гангліонарних синапсах медіатором служить ацетихолін. На закінченнях постгангліонарних волокон парасимпатичних нервів теж виділяється ацетилхолін, який збуджує діяльність клітин внутрішніх органів або проявляє гальмівний вплив, зокрема сповільнює роботу серця. На закінченнях постгангліонарних волокон симпатичних нервів виділяється медіатор норадреналін, за винятком тих симпатичних нервів, які іннервують потові залози і розширюють судини скелетних м’язів.В цих останніх двох випадках має місце дія ацетилхоліну, який виділяється в синаптичні щілини постгангліонарними волокнами симпачних нервів.

Нервові волокна, на закінченнях яких виділяється медіатор ацетилхолін, називаються холінергічними. Всі прегангліонарні волокна симпатичних і парасимпатичних нервів, постганглінарні волокна парасимпатичних нервів і постгангліонарні волокна частини симпатичних нервів є холінергічними. Нервові волокна, на закінченнях яких виділяється норадреналін, називаються адренергічними.

Субстанція клітини, що взаємодіє з норадреналіном, називається адренорецептором. Розрізняють два види адренорецепторів: альфа-адренорецептори і бета-адренорецептори. В серцевому м’язі (міокарді) знаходяться бета-адренорецептори, в судинах та інших органах – альфа-адренорецептори і бета-адренорецептори. Збудження альфа-адренорецепторів супроводжується звуженням судин, а збудження бета-адренорецепторів – їх розширенням. Звуження кровоносних судин м’язів при високому рівні адреналіну в крові є результатом його впливу на альфа-адренорецептори. Достатньо низький рівень адреналіну в крові викликає розширення м’язових артерій у зв’язку з переважною дією на бета-адренорецептори.

На відміну від симпатичних нервів парасимпатичні нерви самостійно не існують: всі парасимпатичні нервові волокна йдуть у складі окорухового, лицевого, язиково-глоткового, блукаючого і тазового нервів. Найбільшим з них є блукаючий нерв, який забезпечує своїми парасимпатичними волокнами іннервацію бронхів, серця, стравоходу, шлунка, печінки, підшлункової залози, селезінки, наднирників, нирок, тонких кишок і частину товстого кишечника.

Рис. 1.27

Вегетативна нервова система. А – парасимпатична нервова система; Б – симпатична нервова система: 1 – око, 2 – слізна залоза, З – верхні дихальні шляхи, 4, 5, 6, – слинні залози, 7 – серце, 8 – легені, 9 – стравохід і шлунок, 10 – печінка, 11 – підшлункова залоза, 12 – кишечник, 13 – товста кишка, 14 – нирка, 15 – сечовий міхур, 16 – матка; III, VII, IX, X – черепно-мозкові нерви.

Оскільки симпатичні ганглії знаходяться біля хребта або на невеликій відстані від нього, то прегангліонарні волокна симпатичних нервів коротші від постгангліонарних волокон. У парасимпатичних нервів, навпаки, прегангліонарні волокна довгі, постгангліонарні короткі. Парасимпатичні ганглії розташовані біля або в самих іннервованих органах. Симпатична нервова система регулює роботу всіх органів і тканин організму. Парасимпатичні нерви не іннервують скелетну мускулатуру, центральну нервову систему, більшу частину кровоносних судин.

Дія симпатичних і парасимпатичних нервів щодо діяльності різних органів має протилежну спрямованість. Наприклад, при збудженні симпатичної нервової системи збільшується частота і сила серцевих скорочень, звужується більшість судин, послаблюється тонус і перистальтика (рухова діяльність) шлунково-кишкового тракту, розширюються бронхи і зіниці очей. При збудженні парасимпатичної нервової системи, навпаки, зменшується частота і сила серцевих скорочень, посилюється перистальтика і підвищується тонус шлунка і кишечника, звужуються бронхи і зіниці. Механізм взаємодії між відділами вегетативної нервової системи і регуляція функціонування синапсів представлена на рис. 1.28.

Ситуаційні запитання і задачі

1. Сутність біогенетичного закону. Як у світлі цього закону можна пояснити філо- і онтогенетичний розвиток нервової системи?

2. Функціональний стан нервової системи у своїх пацієнтів невропатологи оцінюють за станом сухожильних рефлексів (рефлекси на розтягнення м’язів). Яку інформацію дають ці рефлекси спеціалісту, що їх досліджує?

3. Дитина народжується без єдиного умовного рефлексу, але майже з повним набором безумовних рефлексів. Які рефлекси спинного мозку чітко проявляються у новонародженої дитини?

4. Де знаходяться рефлексогенні зони і центри таких рефлекторних актів, як блювання, смоктання, ковтання, чхання, кашель?

5. В яких сегментах шийного відділу спинного мозку знаходяться нервові центри, які формують статичні рефлекси, забезпечуючи підтримання певного положення тіла? За яких умов щодо положення голови полегшуватиметься стійка гімнаста на руках — при відхиленні голови назад, чи при відхиленні голови вперед?

6. У піддослідної тварини штучно, хірургічним способом видалили мозочок. Як зміниться рухова діяльність такої тварини?

7. Який шлях проходять нервові імпульси при больовому подразненні від даної рефлексогенної зони до таламуса і до кори головного мозку? Які висхідні провідникові шляхи спинного мозку існують для проведення больового, тактильного і температурного збудження?

8. Людина зробила довільний рух правою рукою. Від яких нейронів кори великих півкуль головного мозку і по якому низхідному шляху надійшли нервові імпульси до м’язів руки?

9. Які відділи головного мозку належать до стовбурової частини? Що являє собою ретикулярна формація і яка її функціональна роль?

10. В результаті інсульту (гострого порушення мозкового кровообігу) людина втратила здатність говорити, але нормально сприймає і розуміє слова, мову інших людей. У неї виник також параліч правої руки. В якій ділянці кори головного мозку виникло пошкодження мовного центра? Чому паралізована права, а не ліва рука?

11. У дітей раннього віку частота серцевих скорочень (ЧСС) – 140-135 ск/хв, у дитини 6-літнього віку – 95 ск/хв, у підлітка 13 літ – 80 ск/хв, у дорослих – 60-70 ск/хв. Яка причина зменшення ЧСС з віком?

Розділ 2

Источник